The Eckhaus equation in an external potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L287
(http://iopscience.iop.org/0305-4470/25/7/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.62
The article was downloaded on 01/06/2010 at 18:12

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The Eckhaus equation in an external potential

F Calogero \dagger and S De Lillo $\ddagger \S$
\dagger Dipartimento di Fisica, Università di Roma 'La Sapienza', 00185 Roma, Italy, and Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
\ddagger Dipartimento di Fisica, Università di Perugia, 06100 Perugia, Italy, and Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia, Italy

Received 24 September 1991

$$
\begin{aligned}
& \text { Abstract. It is pointed out that the Eckhaus nonlinear PDE } \\
& \qquad i \Psi_{t}+\Psi_{x x}+\left[2\left(|\Psi|^{2}\right)_{x}+|\Psi|^{4}-V(x)\right] \Psi=0 \\
& \text { remains } C \text {-integrable (i.e., integrable by a change of dependent variable) even in the } \\
& \text { presence of any given external potential } V(x) \text {. }
\end{aligned}
$$

The Eckhaus nonlinear pde

$$
\begin{equation*}
\mathrm{i} \Psi_{t}+\Psi_{x x}+\left[2\left(|\Psi|^{2}\right) x+|\Psi|^{4}-V(x)\right] \Psi=0 \quad \Psi \equiv \Psi(x, t) \tag{1}
\end{equation*}
$$

is C-integrable, namely it can be linearized, and solved, by an appropriate change of dependent variable (see below). Hitherto this property had been noted and used in the case $V(x)=0[1,2]$; the main purpose of this letter is to point out that (1) remains C-integrable for any given choice of the real 'external potential' $V(x)$. This observation may be of some interest in view of the 'universal' character of the Eckhaus equation (see, for instance, [3]), as well as its relevance as a most convenient 'theoretical laboratory' suitable to exhibit the rich phenomenology associated with 'solitonic' nonlinear pDEs [1,2].

The linearizing transformation reads:

$$
\begin{align*}
& \varphi(x, t)=C(t) \Psi(x, t) \exp \left[\int_{a(t)}^{x} \mathrm{~d} x^{\prime}\left|\Psi\left(x^{\prime}, t\right)\right|^{2}\right] \tag{2a}\\
& \Psi(x, t)=\varphi(x, t)\left[C^{2}(t)+2 \int_{a(t)}^{x} \mathrm{~d} x^{\prime}\left|\varphi\left(x^{\prime}, t\right)\right|^{2}\right]^{-1 / 2} \tag{2b}\\
& \dot{C}(t) / C(t)=\dot{a}(t)|\Psi(a(t), t)|^{2}+2 \operatorname{Im}\left[\psi(a(t), t) \psi_{x}^{*}(a(t), t)\right] \tag{3}\\
& \dot{C}(t) C(t)=\dot{a}(t)|\varphi(a(t), t)|^{2}+2 \operatorname{Im}\left[\psi(a(t), t) \psi_{x}^{*}(a(t), t)\right] \tag{4}\\
& \mathrm{i} \varphi_{t}(x, t)+\varphi_{x x}(x, t)-V(x) \varphi(x, t)=0 . \tag{5}
\end{align*}
$$

8 On leave while serving as Secretary-General, Pugwash Conferences on Science and World Affairs, Geneva, London, Rome.

Here the real function $a(t)$ is arbitrary. In the special case in which $\Psi(x, t)$ and $\varphi(x, t)$ vanish (sufficiently fast) as $x \rightarrow-\infty$, to which our attention is hereafter confined, it is convenient to set $a=-\infty$, so that the transformations (2) read simply

$$
\begin{align*}
& \varphi(x, t)=C \Psi(x, t) \exp \left[\int_{-\infty}^{x} \mathrm{~d} x^{\prime}\left|\Psi\left(x^{\prime}, t\right)\right|^{2}\right] \tag{6a}\\
& \Psi(x, t)=\varphi(x, t)\left[|C|^{2}+2 \int_{-\infty}^{x} \mathrm{~d} x^{\prime}\left|\varphi\left(x^{\prime}, t\right)\right|^{2}\right]^{-1 / 2} \tag{6b}
\end{align*}
$$

with C a constant. Note that the linearizing transformation is independent of the external potential $V(x)$ (provided it is real, as we are assuming), which only enters in the (linear) Schrödinger equation (5) satisfied by $\varphi(x, t)$.

Let us also note that the results written above would apply without modification even if the external potential $V(x)$ were time-dependent.

For the class of solutions that vanish (sufficiently fast) at both ends, the functions $\varphi(x, t)$ and $\Psi(x, t)$ can both be normalized by setting

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \mathrm{d} x|\varphi(x, t)|^{2}=\int_{-\infty}^{+\infty} \mathrm{d} x|\Psi(x, t)|^{2}=1 \tag{7a}
\end{equation*}
$$

provided the constant C in (6) is constrained as follows:

$$
\begin{equation*}
|C|^{2}=2 /\left(\mathrm{e}^{2}-1\right) \tag{7b}
\end{equation*}
$$

As it is well known, for this class of solutions there holds, for the linear Schrödinger equation, the classical (Ehrenfest) theorems:
$(\mathrm{d} / \mathrm{d} t) \int_{-\infty}^{+\infty} \mathrm{d} x x|\varphi(x, t)|^{2}=\mathrm{i} \int_{-\infty}^{+\infty} \mathrm{d} x\left\{\varphi(x, t)\left[\varphi_{x}(x, t)\right]^{*}-[\varphi(x, t)]^{*} \varphi_{x}(x, t)\right\}$
$(\mathrm{d} / \mathrm{d} t)^{2} \int_{-\infty}^{+\infty} \mathrm{d} x x|\varphi(x, t)|^{2}=-2 \int_{-\infty}^{+\infty} \mathrm{d} x V_{x}(x)|\varphi(x, t)|^{2}$.
It is amusing to note that, for the Eckhaus equation (1), the corresponding results read as follows:
$\left.(\mathrm{d} / \mathrm{d} t) \int_{-\infty}^{+\infty} \mathrm{d} x x|\Psi(x, t)|^{2}=\mathrm{i} \int_{-\infty}^{+\infty} \mathrm{d} x\{\Psi(x, t)]^{*}-[\Psi(x, t)]^{*} \Psi_{x}(x, t)\right\}$
$(\mathrm{d} / \mathrm{d} t)^{2} \int_{-\infty}^{+\infty} \mathrm{d} x x|\Psi(x, t)|^{2}=-2 \int_{-\infty}^{+\infty} \mathrm{d} x V_{x}(x)|\Psi(x, t)|^{2}-2 \int_{-\infty}^{+\infty} \mathrm{d} x\left[(|\Psi(x, t)|)_{x}\right]^{2}$.

In the special case corresponding to a harmonic oscillator potential

$$
\begin{equation*}
V(x)=x^{2} \tag{10}
\end{equation*}
$$

the general solution of the Schrödinger equation (5) reads of course

$$
\begin{equation*}
\varphi(x, t)=\sum_{n=0}^{\infty} c_{n} H_{n}(x) \exp \left[-\frac{1}{2} x^{2}-\mathrm{i}(2 n+1) t\right] \tag{11}
\end{equation*}
$$

where the Hermite polynomial $H_{n}(x)$ satisfies the ode

$$
\begin{equation*}
H_{n}^{\prime \prime}(x)-2 x H_{n}^{\prime}+2 n H_{n}(x)=0 \tag{12}
\end{equation*}
$$

The corresponding general solution of the Eckhaus equation (1) is, of course, given by (2b) with (11). In the special case in which $c_{n}=\delta_{n m}$, so that

$$
\begin{equation*}
|\varphi(x, t)|^{2}=c_{m}^{2} H_{n}^{2}(x) \exp \left(-x^{2}\right) \tag{13}
\end{equation*}
$$

is time-independent, the corresponding (static) solution $\Psi(x, t)$ has the same property, namely
$|\Psi(x, t)|^{2}=c_{m}^{2} H_{m}^{2}(x) \exp \left(-x^{2}\right)\left[C^{2}+c_{m}^{2} \int_{-\infty}^{x} \mathrm{~d} y H_{m}^{2}(y) \exp \left(-y^{2}\right)\right]^{-1}$
is also time-independent (this is clearly a general property). However, while in this case $|\varphi(x, t)|^{2}$ is symmetric in $x,|\varphi(x, t)|=|\varphi(-x, t)|$ (see (13)), $|\Psi(x, t)|$ does not possess this property (see (14)).

Let us also note that, while in the case of the harmonic oscillator potential (10) the mean value $\bar{x}(t)$ of the coordinate x with respect to the 'wavefunction' $\varphi(x, t)$, satisfying the linear Schrödinger equation (5) (with (10)),

$$
\begin{equation*}
\bar{x}(t)=\int_{-\infty}^{+\infty} \mathrm{d} x x|\varphi(x, t)|^{2} \tag{15}
\end{equation*}
$$

oscillates harmonically:

$$
\begin{equation*}
\bar{x}(t)=\bar{x}(0) \cos (2 t)+\frac{1}{2} \dot{x}(0) \sin (2 t) \tag{16}
\end{equation*}
$$

(as a well known general consequence of ($8 b$), , no analogous result holds for the mean value $\tilde{x}(t)$ of x taken with respect to the 'wavefunction' $\Psi(x, t)$ satisfying the Eckhaus equation (1) (with (10)),

$$
\begin{equation*}
\tilde{x}(t)=\int_{-\infty}^{+\infty} \mathrm{d} x x|\Psi(x, t)|^{2} \tag{17}
\end{equation*}
$$

As a second example, let us mention the case

$$
\begin{equation*}
V(x)=-2 p \delta(x-a) \tag{18}
\end{equation*}
$$

with p a positive constant. It is then well known that the linear Schrödinger equation (5) has one static normalized solution ('bound state'),

$$
\begin{array}{ll}
\varphi(x, t)=p^{1 / 2} \exp \left[p(x-a)+\mathrm{i} p^{2} t\right] & x \leqslant a \\
\varphi(x, t)=p^{1 / 2} \exp \left[p(a-x)+\mathrm{i} p^{2} t\right] & x \geqslant a \tag{19b}
\end{array}
$$

In this case the corresponding normalized static solution for Ψ can be explicitly evaluated:

$$
\begin{array}{ll}
\Psi(x, t)=p^{1 / 2} \exp \left[p(x-a)+\mathrm{i} p^{2} t\right] /\left\{C^{2}+\exp [2 p(x-a)]\right\}^{1 / 2} & x \leqslant a \\
\Psi(x, t)=p^{1 / 2} \exp \left[p(x-a)+\mathrm{i}^{2} t\right] /\left\{C^{2}+2-\exp [2 p(a-x)]\right\}^{1 / 2} & x \geqslant a \tag{20b}
\end{array}
$$

with the constant C satisfying ($7 b$). It is left as an amusing and instructing exercise for the diligent reader to generalize the results of [1] in this case.

Finally we note that the extension of the Eckhaus equation described in this letter is applicable, in obviously analogous manner, to other C-integrable equations, such as those discussed in [3] (see also [4,5]).

References

[1] Calogero F and De Lillo S 1987 The Eckhaus pDe $i \Psi_{t}+\Psi_{x x}+2\left(|\Psi|^{2}\right)_{x} \Psi+|\Psi|^{4} \Psi=0$ Inverse Problems 3 633-81
[2] Calogero F and De Lillo $S 1988$ Cauchy problems on the semiline and on a finite interval for the Eckhaus equation Inverse Problems 4 L33-7
[3] Calogero F 1991 Why are certain nonlinear PDEs both widely applicable and integrable? What is Integrability? ed V E Zakharov (Berlin: Springer)
[4] Calogero F and Xiaoda Ji 1991 C-integrable nonlinear PDes. I J. Math. Phys. 32 875-87
[5] Calogero F and Xiaoda Ji 1991 C-integrable nonlinear PDEs. II J. Math. Phys. 32 2703-17

